Electronic Structure of Mercury Oligomers and Exciplexes: Models for Long-Range/Multicenter Bonding in Phosphorescent Transition-Metal Compounds

Mohammad A. Omary,* Pankaj Sinha, Paul S. Bagus,* and Angela K. Wilson*

Department of Chemistry, University of North Texas, P.O. Box 305070, Denton, Texas 76203

Received: October 25, 2004

Spectroscopic and bonding properties of Hgₙ, oligomers and *Hgₙ, exciplexes are determined by rigorous theoretical treatments. Reliable values that agree well with experimental data have been computed for the luminescence energies and other molecular spectroscopic parameters by making a careful selection of theoretical methods and basis sets. The calculations clarified the assignments for several phosphorescence bands in the mercury vapor based on calculated energies and other parameters that quantify the large excited-state distortion in the emitting states. Both the weak ground-state mercurophilic bonding and the stronger covalent bonding in the triplet and quintet excited states studied are found to be cooperative, which is important for fundamental and applied research for luminescent and magnetic materials that have spectral behavior similar to that of Hgₙ systems.

Introduction

Theoretical studies of the electronic structure and spectra of luminescent materials are of great significance for the design of better materials for technological applications. Theory can provide definitive assignments of the electronic states and the specific entities responsible for the emissions in existing luminescent materials as well as a priori predictions of the emission colors for new materials. However, rigorous characterization of the electronic structure of complexes containing heavy metal atoms has been difficult because of the size and complexity, including relativistic effects, of these systems. Largely on the basis of major advances in computational quantum chemistry and in the performance of modern workstations and supercomputers, it has become feasible to use theory to solve several puzzles in the photophysics of coordination compounds of heavy metals. Achieving this requires the coordination of the efforts of spectroscopists and computational chemists. While some success has been achieved in this regard, studies in which modern methods are used to compute the luminescence energies of transition-metal species remain relatively scarce.¹–⁴

As a starting point in our ongoing efforts to model luminescent closed-shell transition-metal complexes of current interest (with d¹⁰, d⁸, and d⁰s² configurations), we have chosen to pursue a study of the bonding and spectroscopy of mercury clusters. It is possible to study Hgₙ species, at least for small to modest values of n, using several computational methods and large basis sets to describe the molecular orbitals (MOs). This allows us to validate the accuracy of our results with the different methods and to understand the consequences of the approximations that are used in the methods. This validation is particularly reliable because we are able to use the correlation-consistent series of basis sets for the MOs to systematically approach the complete basis set (CBS) limit at which the results are exact for the theoretical method used. For future work on larger models where more approximate methods must be used, our validations on the Hgₙ species will enable us to make proper choices of methodology. However, since the Hgₙ species have well-characterized spectral properties, the study of these systems has scientific value in its own right in addition to laying the ground for future studies of more complex systems. This scientific value has importance beyond the Hgₙ systems since their bonding and spectral characteristics are similar to those in many of the aforementioned luminescent closed-shell transition-metal complexes. Common characteristics include weak ground-state mercurophilic bonding,⁵–¹⁰ covalent M–M bonding in many low-lying excited states leading to the formation of luminescent excimers and exciplexes,¹¹–²¹ the consequent very large Stokes shifts,²¹–²⁵ significant relativistic and correlation effects,⁵ and the phosphorescent nature of the emission bands owing to a very large spin–orbit coupling.²⁷–²⁵ In particular, the mercury dimer, Hg₂, is a simple vehicle to illustrate the chemistry underlying the properties of the ground and excited states that will be useful for the understanding of larger, more complex oligomers. A qualitative illustration of the spectroscopic and bonding features of the mercury dimer is shown in Chart 1. The transition from the antibonding orbital ñg(6p) to the bonding orbital ñg(6s) results in an increase in the formal bond order from 0 in the 1Σ_g⁻ ground state to 1 (i.e., a single bond) in the 3Σ_u⁺ excited state. A low-energy excimer phosphorescence band results from the opposite transition.

In addition to the significance of closed-shell luminescent materials of coordination compounds in the aforementioned fundamental research areas, they have been receiving a great deal of attention in applied research in several different areas. These include photonics (e.g., molecular LEDs and laser materials),²⁶ nonlinear optics,²⁷ optical sensing of environmental pollutants,²⁸ solar energy conversion,²⁹ photocatalysis,³⁰ luminescent probes for biological systems,³¹ optical telecommunication,³² photoinduced magnetic switching,³³ optical writing,³⁴ and various inorganic conducting and semiconducting materials.³⁵ For the proper design of new materials for each of these technologies, understanding the electronic structure is extremely important. Hence, the experience gained in performing our studies of Hgₙ species will be beneficial for future studies of...
larger ligand-containing systems. In the cases of these larger systems, we will be able to select the most appropriate methodologies and approximations without the need to carry out a broad study with all the methods and basis sets used in the present work on the mercury species.

Since mercury vapor is known to exhibit bright continuum emissions with no nearby absorptions, it has long been proposed as a candidate for an excimer laser. In fact, Cefalas et al. reported in 1986 a superfluorescent laser action based on molecular and atomic mercury species. Two continuum phosphorescence bands are well-known to exist in the mercury vapor, a near-UV band centered at 335 nm and a green band near 485 nm. These two bands are attributed to excited-state Hg—Hg bonded species. The assignment accepted today relates the 335 nm phosphorescence to a *Hg2 excimer, while the 485 nm band is related to a phosphorescent trimer exciplex. *Hg3. The efforts of computational chemists to improve the reliability of quantum mechanical calculations for mercury oligomers have been focused mostly on the ground state of the Hg2 dimer molecule. There are two noteworthy theoretical studies in which the excited states of Hg2 were treated, both of which were concerned with constructing potential energy surfaces for a large number of excited states, including Rydberg states. There are other theoretical studies of Hg molecular species before 1990, for which we refer the reader to the survey in ref 48. In the study by Czuchaj et al., only two valence electrons per Hg atom were treated explicitly (which means that the Hg 5d electrons cannot participate directly in the chemical bonding) and a semiempirical method was used to estimate the spin—orbit splittings. In the prior study by Balasubramanian et al., they considered somewhat fewer excited states of Hg2 than those considered by Czuchaj et al., and their basis sets for the valence orbitals were smaller. However, the theoretical treatment of Balasubramanian et al. was, in some respects, more rigorous. In particular, they treated explicitly 12 valence electrons per Hg atom, thus allowing the 5d electrons to participate in the chemical bonding. Furthermore, for the excited states, relativistic wave functions were determined, and this placed the treatment of spin—orbit coupling and of electron correlation on an equal footing. Both these studies were restricted to the Hg2 dimer.

In this paper, we address several issues in spectroscopy and bonding for Hgₙ species with n = 1, 2, 3, and 4: (1) We assess the performance of a variety of theoretical treatments for accurate calculations of electronic transition energies. (2) We discuss the calculated luminescence energies in terms of the proper assignment of the continuum emission bands in mercury vapor. (3) We evaluate several spectral parameters that probe the extent of the geometric changes in the excited states of the various oligomers. (4) We study the cooperativity of the Hg—Hg bonding in the electronic ground state and the low-lying paramagnetic excited states that are relevant for the spectroscopy and bonding issues of concern. (5) We discuss the implication of the results on fundamental and applied research for closed-shell luminescent materials that have properties similar to those of the Hgₙ species.

Computational Details

The calculations were performed for Hgₙ (n = 1–4) species where all systems were assumed to be linear and to have Dₐₙ symmetry. For the trimer, the assumption that the molecule has Dₐₙ symmetry in its ground and excited states was tested and found to be correct. The theoretical methods used included coupled cluster with single, double, and quasiperturbative triple excitations, CCSD(T), Møller–Plesset second-order perturbation theory, MP2, and density functional theory, DFT, with the B3LYP and B3PW91 functionals. The calculations were performed for the closed-shell ground states and for relevant low-lying paramagnetic excited states. Certain relativistic effects were included through the use of effective core potentials (ECPs) to represent core electrons that were not treated explicitly. The relativistic effects included are those described as scalar relativistic effects in contrast to spin—orbit coupling terms that are not treated. In this context, we note that the spin—orbit splittings are not expected to be especially large for the states of Hgₙ of interest here; for example, for Hg₂, the triplet and quintet states are spin-unrestricted and involved either unrestricted Hartree–Fock (UHF) wave functions or unrestricted density functional (UDF) densities. All calculations were performed using the Gaussian 98 suite of programs.

Three types of combinations of ECPs and basis sets were used in this work: (1) A 12-electron ECP together with a double-ξ (DZ) quality contracted Gaussian-type orbital (CGTO) basis set. The ECP and CGTO parameters were optimized by Hay and Wadt. Here, the 10 5d and the 2 6s electrons from each Hg atom are treated explicitly, while the remaining 68 core electrons are represented by an ECP. This ECP and basis set are available in the Gaussian library and under the descriptive name of “LANL2DZ”. (2) A combination of ECP and basis set that was taken from the work of Couty and Hall. An important feature of this combination is that CGTOs optimized to describe the atomic Hg 6p orbital have been included; otherwise, the basis set is of DZ quality. The Couty–Hall combination uses a 20-electron ECP developed by Christiansen and co-workers so that the electrons arising from the 5s²5p⁶5d¹⁰6s² shells of each Hg atom are treated explicitly. ECPs such as this one avoid...
Figure 1. Calculated excitation energy for the atomic $^1S \rightarrow ^3P$ transition in the Hg atom.

artifacts that can be associated with ECPs where fewer electrons are explicitly represented.\textsuperscript{59} (3) A correlation-consistent (cc) series of CGTO basis sets known as the correlation-consistent polarized relativistic valence “$x$” $\xi$ basis sets (cc-pRV$\zeta$Z, where $x$ is D (double), T (triple), Q (quadruple), and 5 (quintuple)) developed by Peterson.\textsuperscript{60} These basis sets for Hg are based on a 20-electron ECP developed by the Stuttgart group.\textsuperscript{61} The quality of this series of basis sets improves systematically with respect to increasing basis set size. As the basis set size increases, the CBS limit—the point at which the MOs are completely described, and no further improvement in basis set size will modify the results—is approached.\textsuperscript{62,63}

For the calculation of the absorption and emission energies of the electronic transitions in Hg$_n$ oligomers with $n \geq 2$, we consider vertical transitions between the singlet gerade ground state and the emitting triplet ungerade excited state. For the Hg$_2$ dimer, for example, the absorption energy is reported as the vertical transition energy at the position of the minimum of the $^1\Sigma_g^+$ ground-state potential energy curve while the emission energy is the vertical transition energy at the position of the minimum of the $^3\Sigma_u^+$ excited-state curve. For the dimer and trimer, our estimates of the Stokes shifts, the widths of the luminescence bands, and the excited-state vibrational quantum numbers are described in the next section. The vibrational and rotational parameters for Hg$_n$ oligomers and $^4$Hg$_n$ exciplexes with $n \geq 2$ were taken from either frequency calculations for the optimized geometries of the models or a Dunham analysis\textsuperscript{64} for a series of single-point calculations around $R_c$.

Results and Discussion

Electronic Transition Energies for the Hg Monomer.

Figure 1 shows the results of the calculations of the excitation energies for the atomic $^1S \rightarrow ^3P$ transition in the Hg monomer. Owing to the large spin–orbit coupling in the mercury atom, the three $J$ levels of the $^3P$ state have large separation; the experimental values\textsuperscript{65} are indicated in Chart 2, which shows the energy levels of the monomer in the presence and absence of spin–orbit coupling. When spin–orbit splitting and mixing are taken into account, the forbidden $^1S_0 \rightarrow ^3P_1$ transition becomes allowed because of the mixing of $^1P_1$ character into the dominantly $^3P_1$ state.\textsuperscript{66} In Chart 2, we show schematically the effect of the configuration mixing between these two $J = 1$ levels by raising the position of the $^3P_1$ level slightly above the position of the $^1P_1$ term. This mixing also lowers the position of the $^3P_1$ level below that which would be given by the Landé interval rule for $L$–$S$ coupling in a pure $^3P$ term.\textsuperscript{66} Although the deviation from the Landé interval rule is small for the $^3P$ level of the Hg atom, ~400 cm$^{-1}$,\textsuperscript{65,66} it is the small mixing of $^1P_1$ with $^3P_1$ that makes the $^1S_0$ to $^3P_1$ transition dipole allowed. Because spin–orbit coupling is not treated in the calculations performed in this work, the results are compared with the weighted average of the experimental values for the three $^1S_0 \leftrightarrow ^3P_{1,0,1}$ transitions; we refer to this weighted average as the “experimental value” for the $^1S \rightarrow ^3P$ transition. These monomer calculations serve to provide a calibration of the accuracy of the various theoretical methods and basis sets before their utilization to solve chemical bonding and spectroscopy problems for the dimer and larger Hg$_n$ clusters. We have evaluated the performance of MP2, CCSD(T), and the DFT methods B3LYP and B3PW91 using the several basis sets and ECPs outlined above. These four methods account for electron correlation, which is extremely important for the various issues discussed in this work.\textsuperscript{5}

The quality of the results was found to depend strongly on the basis set and ECP used. Figure 1 shows that the deviation from the experimental $^1S \rightarrow ^3P$ transition energy was several thousand inverse centimeters with all four methods using the LANL2DZ basis set, which is conveniently available in the Gaussian suite of programs.\textsuperscript{55} We conclude that using this standard basis set leads to qualitatively wrong results for transition energies of mercury species. The larger size of the Couty–Hall basis set and the inclusion therein of the outer 6$p$ functions of Hg (which should be important for the excited states of Hg$_n$ systems) as well as the use of a 20-electron ECP are expected to lead to improvement of the results over those.
obtained with the LANL2DZ basis set. The data in Figure 1 show that the results indeed improve when the Couty–Hall basis set is used instead of the Hay–Wadt basis set. This improvement was only a slight one when the MP2 and CCSD(T) methods were used, in which the deviation from the experimental 1S → 3P transition energy remained several thousand inverse centimeters. A much larger improvement resulted when the Couty–Hall basis set was used with the DFT functionals B3LYP and B3PW91, which gave deviations of only a few hundred inverse centimeters from the experimental transition energy. We note, however, that when a good agreement with experiment is obtained, this could be either due to the use of a reliable theoretical treatment or due to a fortuitous cancellation of method and basis set errors. An excellent illustration of the virtue of using correlation-consistent basis sets to unravel this issue is seen in the MP2 data in Figure 1. The 1S → 3P transition energy of the Hg atom calculated with the smallest, double-ξ, correlation-consistent basis set (cc-pRVDZ) is very close to the experimental value. However, this is fortuitous because, as one moves in the direction of larger more accurate basis sets, the resulting energies calculated become progressively higher toward a plateau that is about 3000 cm⁻¹ away from the experimental weighted average. When the calculations are performed using the CCSD(T) method, which is a higher level of theory that is more reliable than MP2, the cc-pRVDZ basis set yields a 1S → 3P transition energy that is far from the experimental value, but using the larger cc-pRVTZ, cc-pRVOZ, and cc-pRVSZ basis sets yields values that converge to within only a few hundred inverse centimeters higher energy than experiment. The 1S → 3P excitation wavelength calculated using CCSD(T)/cc-pRVSZ is ~236 nm, compared to ~239 nm for the experimental weighted average. Using the correlation-consistent basis sets with MP2 and CCSD(T), therefore, has allowed us to conclude that the transition energy calculated using MP2/cc-pRVDZ is fortuitously close to the experimental value while the closeness of the results using CCSD(T) and at least a triple-ξ cc-pRVI2Z basis set to the experimental value is because a reliable theoretical treatment was used. Figure 1 shows that using the cc-pRVI2Z basis sets also gave accurate transition energies when the DFT hybrid functionals B3LYP and B3PW91 were used. B3PW91 yields transition energies that are somewhat closer to the experimental value than those calculated using B3LYP. The overall data in Figure 1 suggest that, as long as a cc-pRVI2Z basis set of at least triple-ξ quality is utilized, using the CCSD(T), B3LYP, and B3PW91 methods should lead to electronic transition energies that are reliable, especially for assignment purposes. The results shown in Figure 1 with these method/basis set combinations are in much better agreement with the experimental data than those calculated previously. For example, the 1S → 3P transition energy of the Hg atom calculated by Balasubramanian et al.⁴⁹ was 44.35 × 10⁵ cm⁻¹, or too high by ~2500 cm⁻¹. Czuchaj et al. obtained even poorer values, which they attributed to the neglect of 5d electrons in the valence shell in their calculations.⁴⁸

**Metal–Metal Bonding in the Hg₂ Dimer and the *Hg₂ Excimer.** The bonding in the mercury dimer is metalphilic in the ground state and covalent in many low-lying excited states. Due to spin–orbit coupling, the lowest energy absorption and emission bands for the dimer are ascribed to spin-forbidden transitions between the singlet ground state and low-lying triplet excited states. Following the Russell–Saunders notation scheme, the ground electronic state has a 1Σ⁺ stability while the two lowest lying triplet excited states that are created by a transition from the σ_u*(6s) antibonding HOMO to the τ_u(6p) and σ_g(6p) bonding orbitals have 1Π_g and 3Σ^+ total symmetries, respectively. Table 1 shows the results we obtained for the equilibrium distance (R_e) and binding energy (D_e) of these three states.

For the mercurophilic bonding in the 1Σ_g⁻ ground state, it is noted that this bonding is accounted for using the MP2 and CCSD(T) methods regardless of the basis set used (Table 1). Because this bonding involves dispersion, DFT methods generally yield repulsive potential energy curves. It has been known for some time that care must be taken to determine whether a given density functional can properly determine dispersion forces, especially for interactions involving rare gas atoms.⁶⁷ The present work for the 1Σ_g⁻ ground state of Hg₂ illustrates limitations of using DFT to describe systems bound by metalphilic bonding where dispersion interactions are also important. While several of the DFT curves do have minima for the 1Σ_g⁻ ground state of Hg₂, these minima are above the dissociation limit. This indicates that the DFT representation of the dispersion forces was not sufficiently strong to overcome the steric or Pauli repulsion of the Hg atoms with each other. Clearly, such minima do not represent a chemically meaningful dispersion interaction. For the 1Π_u and 3Σ^+ excited states, on the other hand, all methods, including DFT and HF (not shown), accounted for the Hg–Hg bonding because it is covalent. Aside from these expected qualitative trends, further discussion is warranted for some of the results in Table 1. First, it is noted that using the MP2 method gives rise to higher D_e energies and shorter R_e distances than the experimental values for both the ground state and the excited states studied. These errors are particularly significant for the ground state. For example, the MP2 D_e values for the cc-pRVTZ and cc-pRVOZ basis sets are more than 3 times larger than the CCSD(T) values obtained with the same basis sets. However, the MP2 errors are also significant for the excited 3Σ^+ and 1Π_u states. There are two reasons for the limitations of the MP2 results: (1) MP2 is a second-order perturbation theory, and it may be necessary to include higher order perturbations to converge toward the exact results.⁶⁵ Indeed, when test calculations using a higher order perturbation theory were performed (MP3 and MP4), the D_e values dropped to nearly half the corresponding MP2 values. (2) Møller–Plesset perturbation theory assumes a single-configuration reference,⁵¹ while multiconfiguration references are needed to properly describe the zeroth-order Hg₂ wave functions.⁴⁸,⁴⁹ The CCSD(T) approach reduces a great part of these difficulties;⁶⁸ hence, both the D_e and R_e values shown in Table 2 using CCSD(T) were more accurate than those obtained with MP2. Second, while most of the DFT results gave negative D_e values, positive D_e values were obtained when the Couty–Hall basis set was used in conjunction with B3LYP and B3PW91. Third, some anomalous trends were obtained for the D_e and R_e values on going to larger basis sets in the cc-pRVI2Z series such that the smooth convergence seen in the monomer data, see Figure 1, with these basis sets was not always seen for the dimer. We believe that basis set superposition errors (BSSEs), which were not included herein, represent a major reason for these trends. BSSE essentially arises due to an overdescription of the dimer relative to the monomer, and the impact on bond lengths and energies is most significant for lower level basis sets.⁶⁹,⁷⁰

The results in Table 1 are compared to the experimental values, when available, as well as to the previous calculations in refs 48 and 49. Although experimental values are not available for the Russell–Saunders states we have calculated, Balasubramanian et al. showed that the Russell–Saunders states 1Σ_u⁻, 3Σ^+, and 1Π_g considered in Table 1 represent 95%, 91%, and
TABLE 1: Equilibrium Internuclear Distances and Dissociation Energies for the \( ^1\Sigma_u^+, \Sigma_u^+, \) and \( ^3\Pi_g \) States of \( \text{Hg}_2 \) Using Various Theoretical Treatments

<table>
<thead>
<tr>
<th>method/basis</th>
<th>( R_c ) (Å)</th>
<th>( D_e ) (cm(^{-1}))</th>
<th>( R_c ) (Å)</th>
<th>( D_e ) (cm(^{-1}))</th>
<th>( R_c ) (Å)</th>
<th>( D_e ) (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/LANL2DZ</td>
<td>3.521</td>
<td>768</td>
<td>2.847</td>
<td>7962</td>
<td>2.727</td>
<td>8013</td>
</tr>
<tr>
<td>MP2/Couty–Hall</td>
<td>3.516</td>
<td>936</td>
<td>2.732</td>
<td>10706</td>
<td>2.642</td>
<td>10476</td>
</tr>
<tr>
<td>MP2/cc-pRVDZ</td>
<td>3.496</td>
<td>937</td>
<td>2.702</td>
<td>8698</td>
<td>2.585</td>
<td>9993</td>
</tr>
<tr>
<td>MP2/cc-pRVTZ</td>
<td>3.444</td>
<td>808</td>
<td>2.669</td>
<td>8723</td>
<td>2.565</td>
<td>10466</td>
</tr>
<tr>
<td>MP2/cc-pRQVZ</td>
<td>3.379</td>
<td>926</td>
<td>2.653</td>
<td>9302</td>
<td>2.590</td>
<td>11049</td>
</tr>
<tr>
<td>MP2/cc-pRV5Z</td>
<td>3.331</td>
<td>1005</td>
<td>2.651</td>
<td>9633</td>
<td>2.546</td>
<td>11396</td>
</tr>
<tr>
<td>CCSD(T)/LANL2DZ</td>
<td>3.876</td>
<td>429</td>
<td>2.891</td>
<td>7402</td>
<td>2.779</td>
<td>8240</td>
</tr>
<tr>
<td>CCSD(T)/Couty–Hall</td>
<td>3.890</td>
<td>788</td>
<td>2.760</td>
<td>9919</td>
<td>2.677</td>
<td>10403</td>
</tr>
<tr>
<td>CCSD(T)/cc-pRVDZ</td>
<td>3.837</td>
<td>490</td>
<td>2.782</td>
<td>8093</td>
<td>2.659</td>
<td>9306</td>
</tr>
<tr>
<td>CCSD(T)/cc-pRVTZ</td>
<td>3.976</td>
<td>270</td>
<td>2.754</td>
<td>8032</td>
<td>2.643</td>
<td>9513</td>
</tr>
<tr>
<td>CCSD(T)/cc-pRQVZ</td>
<td>3.862</td>
<td>276</td>
<td>2.738</td>
<td>8494</td>
<td>2.626</td>
<td>9937</td>
</tr>
<tr>
<td>B3LYP/LANL2DZ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B3LYP/Couty–Hall</td>
<td>3.509</td>
<td>349</td>
<td>2.741</td>
<td>10463</td>
<td>2.700</td>
<td>10984</td>
</tr>
<tr>
<td>B3LYP/cc-pRVDZ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B3LYP/cc-pRVTZ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B3LYP/cc-pRQVZ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B3PW91/LANL2DZ</td>
<td>4.495</td>
<td>612</td>
<td>3.291</td>
<td>11133</td>
<td>3.664</td>
<td>11439</td>
</tr>
<tr>
<td>B3PW91/Couty–Hall</td>
<td>4.495</td>
<td>612</td>
<td>3.291</td>
<td>11133</td>
<td>3.664</td>
<td>11439</td>
</tr>
<tr>
<td>B3PW91/cc-pRVDZ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B3PW91/cc-pRVTZ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B3PW91/cc-pRQVZ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B3PW91/cc-pRV5Z</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>exp1(^b)</td>
<td>– (3.63 ± 0.04)(^a)</td>
<td>(350 ± 20)(^a)</td>
<td>(2.5 ± 0.1)(^a)</td>
<td>(8 260 ± 200)(^a)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ref 48(^b)</td>
<td>– (3.94)</td>
<td>(296)</td>
<td>2.80 (2.83)</td>
<td>8095 (6204)</td>
<td>2.70 (—)</td>
<td>10050 (—)</td>
</tr>
<tr>
<td>ref 49(^b)</td>
<td>– (3.84)</td>
<td>(—)</td>
<td>(2.90)</td>
<td>(10870)</td>
<td>(2.79)</td>
<td>(12840)</td>
</tr>
</tbody>
</table>

\(^a\) Blank entries in DFT results refer to calculations that gave repulsive curves or minima above the dissociation limit for the \( ^1\Sigma_u^+ \) ground state.

\(^b\) Values enclosed in parentheses are experimental values and calculated values from refs 48 and 49 for the spin–orbit states \( X 0_g^+ \), \( D 1_u \), and \( A 0_f^+ \), which correspond to the \( ^1\Sigma_u^+ \), \( ^3\Sigma_u^+ \), and \( ^3\Pi_g \) states, respectively (see Chart 3 and the text).

96% of the character of the wave functions for the spin–orbit levels \( X 0_g^+ \), \( D 1_u \), and \( A 0_f^+ \), respectively.\(^49\) The dominance of the Russell–Saunders coupling is also evident in the similarity between the \( R_e \) and \( D_e \) values quoted from ref 48 in Table 1 for the Russell–Saunders states versus the corresponding spin–orbit levels. As seen in Table 1, the \( R_e \) and \( D_e \) values we calculated using the CCSD(T) method and the cc-pRQVZ basis set for the ground state are in reasonable agreement with the experimental values; our results are at least as good as those in refs 48 and 49. There are other reports of calculations that also gave reasonable results for the ground state; for a discussion of those, we refer the reader to the review in ref 48. On the other hand, the excited-state calculations shown in Table 1 for the \( ^3\Pi_g \) and \( ^3\Sigma_u^+ \) states are in good qualitative agreement with both the experimental values and the previous calculations in refs 48 and 49 for all the methods, including the DFT methods. We consider the results using the CCSD(T)/cc-pRQVZ combination to be the most reliable ones for all three states studied.

**Phosphorescence and Absorption Bands of the \( \text{Hg}_2 \) Dimer.** Figure 2 shows the results of the calculations of the phosphorescence wavelength corresponding to the \( ^3\Sigma_u^+ \rightarrow ^1\Sigma_g^+ \) transition in the \( \text{Hg}_2 \) dimer. Many of the trends seen in the monomer transition calculated in Figure 1 extend to the dimer transition calculated in Figure 2. The overall data in Figure 2 suggest that, as long as a cc-pR\(v\)Z basis set of at least triple-\( \zeta \) quality is utilized, the CCSD(T), B3LYP, and B3PW91 methods lead to calculated phosphorescence wavelengths that are within the experimental emission envelope of the well-known near-UV continuum emission of the \( \text{Hg}_2 \) dimer while MP2 leads to inaccurate results due to the limitations of MP2 described above. This is a useful result for assignment purposes, because it verifies that the 335 nm emission in the \( \text{Hg} \) vapor is a dimer emission related to the \( ^3\Sigma_u^+ \rightarrow ^1\Sigma_g^+ \) transition in \( \text{Hg}_2 \). However, care must be taken before quantitative conclusions are drawn from the results in Figure 2. This is because the \( ^3\Sigma_u^+ \rightarrow ^3\Sigma_g^+ \) Russell–Saunders transition calculated has an energy somewhat different from that of the \( D 1_u \rightarrow X 0_g^+ \) spin–orbit transition observed experimentally. Chart 3 shows the relationship between the two transitions in the context of the electronic states of the

**Chart 3:** Electronic States of the Mercury Dimer in the Presence and Absence of Spin–Orbit Coupling\(^a\)

\(^a\) Spin–orbit states involved in electric dipole allowed transitions and LS states involved in parity-allowed transitions are indicated by full lines, while the arrows represent the transitions of interest in this work. There is a slight energy difference between the \( ^3\Sigma_u^+ \) state modeled and the \( D 1_u \) spin–orbit emitting state.
TABLE 2: Molecular Spectroscopic Parameters for the *Hg₂ Excimer Using the Methods Indicated and the cc-pRVTZ Basis Set

<table>
<thead>
<tr>
<th>Method</th>
<th>$\nu_{\text{cm}} = 0$</th>
<th>$\nu_{\text{cm}} = 3$</th>
<th>$\nu_{\text{cm}} = 12$</th>
<th>$\omega_{\text{cex}}$</th>
<th>$\omega_{\text{cex}}$</th>
<th>$B_{\text{c}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>978</td>
<td>2308</td>
<td>4528</td>
<td>5567</td>
<td>40</td>
<td>98 (125)</td>
</tr>
<tr>
<td>B3PW91</td>
<td>834</td>
<td>2454</td>
<td>4530</td>
<td>5628</td>
<td>44</td>
<td>104 (135)</td>
</tr>
<tr>
<td>CCSD(T)</td>
<td>1145</td>
<td>3597</td>
<td>5534</td>
<td>7835</td>
<td>57</td>
<td>116 (136)</td>
</tr>
</tbody>
</table>

$^a$ Values for the nonemitting $^1\Pi_u$ state are indicated in parentheses, whereas values not in parentheses are for the emitting $^3\Sigma_g^+$ state. $^b$ The $\nu' = 3$ and 12 vibrational levels have Boltzmann populations of, respectively, ~50% and ~10% at the experimental temperature of 763 K at which the 335 nm emission in the mercury vapor has been reported. $^c$ SS = Stokes shift. The $^3\Sigma_g^+ \rightarrow ^1\Sigma_g^+$ absorption energy is calculated at the experimental distance for the dimer (3.63 Å). The $^3\Sigma_g^+ \rightarrow ^1\Sigma_g^+$ emission energy is calculated at the minimized distance of the emitting $^3\Sigma_g^+$ state for each method (see Table 1). $^d$ Estimated bandwidths at ~50% and 95% of the peak intensities reported in Figure 3 of ref 39. $^e$ Experimental values not in parentheses are for the D $^1\Pi_u$ ($^3\Sigma_g^+$) state, while experimental values in parentheses are for the A $^0\Sigma_g^-$ ($^1\Pi_u$) state (see Chart 3 and the text).

---

mercury dimer in the presence and absence of spin–orbit coupling. The excited Hg₂ $^1\Sigma_u^+$ manifold leads to D $^1\Pi_u$ and C $^0\Sigma_g^-$ levels as a result of spin–orbit coupling. These $^1\Pi_u$ and $^0\Sigma_g^-$ levels mix with ungerade levels with the same $\Omega$ arising from the $^3\Pi_u$ and $^1\Pi_u$ states. Because of the mixing between the D $^1\Pi_u$ level of $^3\Sigma_u^+$ and the O $^1\Pi_u$ level of $^1\Pi_u$, photon-induced transitions between the ground $^1\Sigma_u^+$ state and the excited $^3\Sigma_u^+$ state that are forbidden because of the $\Delta \Sigma = 0$ selection rule become electric dipole allowed. While the $^3\Sigma_u^+ \rightarrow ^1\Sigma_g^+$ Russell–Sauders transition calculated and the D $^1\Pi_u \rightarrow X ^0\Sigma_g^-$ spin–orbit transition are closely related, they are not identical. Nevertheless, there is only a relatively small energy difference (<1000 cm$^{-1}$) between the $^3\Sigma_u^+$ state modeled and the spin–orbit $^1\Pi_u$ emitting state. Thus, we deem the calculation of the $^3\Sigma_u^+ \rightarrow ^1\Sigma_g^+$ transition energy without treating spin–orbit coupling useful for assignment purposes.

In utilizing computational methods to model luminescence spectra, it is desirable to calculate useful parameters such as the bandwidth, Stokes shift, and excited-state vibrational quantum number initially populated in the absorption transition ($\nu'_{\text{abs}}$). These parameters quantify the extent of excited-state distortion and distinguish luminescence bands associated with a largely distorted excited state such as the case in the mercury excimer emission herein from luminescence bands associated with less distorted excited states such as monomer emissions in aromatic hydrocarbons, for example. We are unaware of any prior study for Hg₂ or any other luminescent transition-metal system in which these parameters were evaluated using modern quantum mechanical methods. For the calculation of these parameters, it is important to construct and analyze potential energy curves for the electronic ground state and emitting excited state. This is illustrated in Figure 3 for the mercury dimer, and the results of the analyses are shown in Table 2. Because the bonding is quite different in the ground and excited states of Hg₂, there is a significant Stokes shift of several thousand inverse centimeters. Another important consequence of the large shift in $R_e$ between the ground state and the emitting excited state is a substantial broadening of the absorption and emission bands. The spatial extent of the vibrational level in the initial state leads to a Franck–Condon envelope for the transition. We estimate this Franck–Condon broadening by using a simple approximation based on the vertical transition energies at the classical turning points of the initial state vibrational levels. The calculations were based on the CCSD(T), B3LYP, and B3PW91 methods and the cc-pRVTZ basis set because these combinations have led to reasonable spectroscopic results for the Hg monomer and dimer as demonstrated above. The methodology is straightforward; however, several notes are warranted here. First, when
excited-state calculations are performed, the identity of the emitting state must be confirmed because this state is not always the lowest energy excited state. As shown in Figure 3, the $^3\Sigma_u^+$ emitting state is lower in energy than the $^1\Pi_u$ nonemitting state at longer $R$ distances but the order is switched at shorter $R$ distances. Obviously, the absorption energy, Stokes shift, bandwidth, and $\nu$ values should all be evaluated on the basis of the $^3\Sigma_u^+$ emitting state. Second, the bandwidth was evaluated on the basis of $\nu_{em} = 0$, 3, and 12 for $^1\Pi_u$. The calculation based on $\nu = 0$ gives the inherent broadening of the electronic absorption band at 0 K without thermal broadening; therefore, it is a fundamentally useful parameter to distinguish broad from narrow emissions. While this calculation would be useful to relate to experimental results for solid-state luminescent materials, for which measurements at cryogenic temperatures are readily obtained and will not have significant thermal population of excited vibrational levels, the $\nu = 0$ bandwidth calculation does not have strong bearing on the $^1\Pi_u$ system because the experimental data are obtained at very high temperatures (e.g., 763 K in ref 39). At such temperatures, excited vibrational levels are significantly populated. A commonly used parameter in experimental luminescence studies is the full width at half-maximum (fwhm). A reasonable estimation of fwhm for the 335 nm $^1\Pi_u$ excimer emission is the bandwidth based on the $\nu = 3$ level, which has a Boltzmann population of $\approx 50\%$ at 763 K. It may be more desirable to calculate the full width of the emission band instead of the more subjective fwhm. For the full-width calculation, levels that have $5-10\%$ Boltzmann populations are assumed to contribute to the broadening beyond the noise level in the experimental spectra. Thus, we approximate the full-width calculations in Table 2 on the basis of the $\nu = 12$ level. In the full-width calculations, we included anharmonicity because it is expected to lead to modest changes in the estimates of the band broadening. The inclusion of anharmonicity is even more important for the determination of $\nu_{abs}$ because of the very high vibrational levels involved.

As shown in Table 2, the calculated spectroscopic results for the mercury dimer are very reasonable and in good agreement with the experimental values available. The large values of the bandwidth, Stokes shift, and $\nu_{abs}$ shown in Table 2 are convenient probes to numerically describe the very large excited-state distortion in the $^1\Pi_u$ excimer. Successful calculation of these parameters demonstrates that the use of computational methods in modeling luminescent materials should be expanded beyond merely the calculation of the emission energy and optimizing the structure of the excited molecule. The calculated vibrational and rotational parameters shown are also in very good agreement with the experimental results available (Table 2).

The limitation of DFT methods in describing dispersion forces has an important consequence on the utilization of these methods in calculating the absorption energies. A reasonable way to estimate the absorption energy with DFT methods in such cases is to calculate the vertical transition at the experimental distance (3.63 Å for $^1\Pi_u$, Figure 3). MP2 and CCSD(T) do not suffer this limitation, so in principle, the absorption energies may be calculated on the basis of the optimized ground-state geometries with these methods. However, because the ground state is rather shallow, there are large uncertainties in the calculation of the $R_e$ for the ground state; thus, the approach followed in calculating the absorption energies in Figure 4 and the consequent spectroscopic parameters in Table 2 is based on vertical transitions at the experimental ground-state distance for all methods. As shown in Figure 4, the $^3\Sigma_u^+ \rightarrow ^3\Sigma_u^+$ absorption energies calculated using this approach are reasonable when CCSD(T) and DFT methods are used in conjunction with at least a cc-pRVTZ basis set. From the data in Figure 4, the largest basis set B3LYP and B3PW91 calculations for the $^3\Sigma_u^+ \rightarrow ^3\Sigma_u^+$ transition energy are, respectively, 900 and 1600 cm$^{-1}$ lower in energy than the observed X $^1\Pi_u$ absorption energy. On the other hand, the CCSD(T) absorption energy obtained using the cc-pRVSQ basis is 1700 cm$^{-1}$ higher than the experimental absorption energy. Thus, it would appear, at first thought, that the DFT method with a B3LYP functional gives a better result for the excitation energy than does the ab initio CCSD(T) method; however, this is misleading. As we discussed above, see Chart 3, the relativistic spin−orbit corrections in $^3\Sigma_u^+$, $^3\Sigma_u^-$, and $^1\Pi_u$ for the D $^1\Pi_u$ level are such that the transition energy between the Russell−Saunders states should be higher than the transition energy between the spin−orbit split levels.

The overall data in Figures 2−4 and Tables 1 and 2 support the literature assignment of the near-UV emission in the mercury vapor to be from the $^3\Sigma_u^+ \rightarrow ^1\Pi_u$ state and provide molecular spectral parameters that quantify the large excited-state distortion. Very good agreement with the experimental data is obtained with a judicious selection of methods and basis sets. To finish the discussion of the spectroscopy of the $^1\Pi_u$ dimer, we address the calculation results for the $^1\Pi_g$ state. Although this state is nonemissive because of the parity selection rule for electric dipole allowed transitions, it is a very important dimer state because it acts as a reservoir of the molecular excitation energy and, hence, is important for laser action of the mercury vapor. Because this state is just lower in energy than the $^3\Sigma_u^+$ state and is a bound state with a large $D_e$ (Table 1), it is considered a metastable state that feeds the higher energy emitting states of the dimer and trimer, as it should not decay to the ground state by an electric dipole mechanism. Nevertheless, Callear and co-workers have discovered a violet emission in the mercury vapor at $\lambda_{em} \approx 395$ nm and assigned it to the $^3\Sigma_u^+ \rightarrow ^1\Pi_g$ transition. For example, B3PW91/cc-pRVSQZ calculations give rise to a phosphorescence wavelength of $\approx 370$ nm due to this transition. The $^1\Pi_g \rightarrow ^1\Sigma_g^+$ transition energies calculated have more significant differences from the experimental results than those above for the $^3\Sigma_u^+ \rightarrow ^1\Sigma_g^+$ transition energies calculated with the same method/basis set combinations. This is because the discrepancy between the
$^3\Sigma_u^+$ calculated and the near-UV emitting D $^1\Sigma_u$ state is much smaller than that between the $^1\Pi_g$ state calculated and the violet emitting A $^3\Pi_u$ spin–orbit states (Chart 3). If calculations that do not include spin–orbit coupling are used to model the luminescence of heavy metal species, one has to tolerate deviations from experimental values such as those calculated here for the $^1\Pi_g \rightarrow ^1\Sigma_g^+$ transition. For assignment purposes, however, such deviations are normally acceptable.

### Bonding and Spectroscopy for the Linear Mercury Trimer

The assignment of the 485 nm emission in the mercury vapor has been subject to controversy. Initially, this band has been assigned to a collision-induced transition from a spin–orbit state of the $^4\text{Hg}_2$ excimer that is below the D $^1\Sigma_u$ state. However, more extensive experimental investigations have indicated that the green emission could not be assigned to a dimer; instead, it has been assumed to originate from the monomer, dimer, and trimer using a Dirac–Fock–Slater SCF approach. We believe that the linear $D_{ab}$ symmetry we obtained is the lower energy geometry for the ground and lowest triplet states of the Hg$_3$ trimer.

The $D_{ab}$ linear Hg$_3$ trimer, a transition from the antibonding HOMO, $\phi_{6g}^{|6g|}$, to the two lowest lying virtual orbitals, the $\psi_{6g}(6p)$ and $\pi_{6g}(6p)$ bonding MOs, leads to ungerade states. Hence, the resulting lowest triplet states, $^3\Sigma_u^+$ and $^1\Pi_u$, are both emitting states. Table 3 shows that both states are strongly bound, as evidenced by the short $R_c$ distances and high $D_0$ energies. The next section contains more insights regarding the bonding properties in the trimer versus smaller and larger clusters in various electronic states, including the ground state (results for the ground state are not shown in Table 3 because a DFT treatment is followed). The results in Tables 3–5 represent the first spectroscopic parameters calculated for the linear Hg$_3$ species, to our knowledge. The linear trimer $^3\Sigma_u^+$ and $^1\Pi_u$ states will lead to three low-lying spin–orbit states that can decay radiatively to the ground state according to Hund’s case (c)

<table>
<thead>
<tr>
<th>$R_c$, Å</th>
<th>$D_0$, cm$^{-1}$</th>
<th>$\lambda_{emission}$ nm</th>
<th>Bandwidth, cm$^{-1}$; $\nu_{em} = 0$</th>
<th>Bandwidth, cm$^{-1}$; $\nu_{em} = 5$</th>
<th>Bandwidth, cm$^{-1}$; $\nu_{em} = 18$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.715$^a$</td>
<td>14828</td>
<td>284.3</td>
<td>967</td>
<td>4724</td>
<td>8538</td>
</tr>
<tr>
<td>2.842$^a$</td>
<td>13924</td>
<td>304.8</td>
<td>920</td>
<td>3063</td>
<td>5758</td>
</tr>
</tbody>
</table>

TABLE 3: Bonding and Molecular Spectroscopic Parameters for the $^4\text{Hg}_3$ Linear Trimer Exciplex Using the B3PW91 Method and the cc-pRVTZ Basis Set

$^a$ The two Hg–Hg distances were found to be identical in the optimized geometries. $^b$ The dissociation is to one excited $^3\Pi$ Hg atom and two ground-state (1S) Hg atoms. $^c$ The absorption wavelengths and $\nu_{abs}$ values are calculated at 3.56 Å (see the text for an explanation of the choice of this distance). $^d$ The $\nu' = 5$ and 18 vibrational levels have Boltzmann populations of, respectively, ~50% and 10% of the population of the $\nu' = 0$ level at the experimental temperature of 763 K at which the 485 nm emission in the mercury vapor has been reported. $^e$ Symmetric stretch.
The extremely high carrier gas pressures (∼10 atm) used in ref 78 should favor collision-induced bands. For these reasons, we believe that the 404 nm emission observed by Koperski et al. should be assigned to the dimer A 0g state instead of a trimer state. This leaves the 436 nm band in ref 78 unassigned. The calculations in Table 3 are consistent with an assignment of this band to a spin−orbit state related to the $\Sigma^+_u$ state of the linear trimer. The energy difference between the calculated $\Sigma^+_u \rightarrow \Sigma^+_g$ phosphorescence wavelength of the trimer and the 436 nm experimental emission is similar to the energy difference between the calculated $\Pi_u \rightarrow \Sigma^+_g$ phosphorescence wavelength of the trimer and the 500 nm experimental emission in ref 78. However, a more definitive assignment of the trimer emission bands must await further calculations we plan that treat spin−orbit coupling. We believe that these results in Table 3 will serve as a backdrop for future experimental and theoretical work on the mercury trimer because much about the spectroscopy of this species remains unknown.

**Cooperativity of the Hg−Hg Bonding in Hg$_n$ Oligomers and *Hg$_4$ Exciplexes.** An important issue in metallophilic bonding is whether there is a driving force for expanding the bonding beyond one bond in an extended system. This is an important structural issue to understand because solid-state systems that exhibit metallophilic bonding often exhibit intermolecular M−M interactions that range from dimers and larger oligomers to extended chains and sheets. Herein we address this issue of cooperativity for both the ground-state mercurophilic bonding and the excited-state covalent bonding in *Hg$_4$ exciplexes. We consider linear systems with 1−4 atoms. In choosing the appropriate method and basis set combination for this study, one needs to choose a combination that describes the systems well while maintaining the feasibility of the calculations for the larger clusters. It is very critical that one chooses a method that accounts for dispersion. Hence, correlated ab initio methods such as MP2 and CCSD(T) work well for this study, while HF and various DFT functionals do not. In this connection, it is appropriate to consider how well MP2 describes the van der Waals dispersion interaction; this is particularly important for our analysis of the ground states of the Hg$_n$ oligomers. For this purpose, we review the results that Burda et al. have obtained in a detailed and careful study of the $D_e$ and $R_e$ for rare gas dimers.79 Since these dimers are bound purely by dispersion forces, the comparison by Burda et al.79 of the accuracy of MP2 and CCSD(T) treatments is quite relevant for the bonding in the ground states of the Hg$_n$ systems. It was found that, while the CCSD(T) $D_e$ values are reasonably close to results obtained with still more accurate methods, the MP2 $D_e$ values have significantly larger errors.79 The MP2 $D_e$ values are 15−35% different from the CCSD(T) values. Moreover, the MP2 $D_e$ values are sometimes smaller and sometimes larger than the reasonably accurate CCSD(T) values; for H$_2$ and for Ne$_2$, the MP2 $D_e$ values are too small, while for Ar$_2$, Kr$_2$, and Xe$_2$, the MP2 $D_e$ values are too large. The MP2 $D_e$ values being too large for heavy dimers is consistent with our results for the $\Sigma^+_u$ ground state of Hg$_2$, see Table 1, where the MP2 $D_e$ value is too large by 0.08 eV compared to the CCSD(T) value. For the $R_e$, Burda et al. find that the MP2 values are close to the CCSD(T) values, differing from them by only $\sim$2−3%.79 These smaller MP2 errors for $R_e$ are also reflected in our results for Hg$_2$. The basis set choice is also important; however, all basis sets discussed above are reasonable when coupled with the proper method. Hence, we have chosen the MP2/LANL2DZ combination in this study of cooperativity. An inspection of Table 1 above for the dimer reveals that this combination describes the ground-state mercurophilic bonding (with a positive $D_e$), correctly predicts that the bonding increases by an order of magnitude in the triplet excited states studied, and that the bonding is stronger in the $\Pi_u$ state than in the $\Sigma^+_u$ state. This validates the MP2/LANL2DZ combination for the study of cooperativity. This conclusion is strongly supported by the comparisons made by Burda et al. for the $D_e$ and $R_e$ of rare gas dimers between MP2 and CCSD(T).79

Table 4 shows the calculated equilibrium distances, the binding energies per atom ($E/n$), the total binding energies for dissociation to separated atoms ($D_e$), and the binding energies per bond ($D_e/bond$) for the ground states of linear Hg$_n$ oligomers ($n = 2, 3, 4$). For the binding energies, the energy of the $1S$ ground state of the Hg atom is the reference energy. The data show an unmistakable trend that the mercurophilic bonding in the electronic ground state is cooperative. As one moves toward larger clusters, the internuclear distances become shorter, and the total and average binding energies become higher. If one accepts the premise that the mercurophilic bonding in the Hg$_n$ system is a good model for the general metallophilic bonding in closed-shell transition-metal complexes, this trend will then explain the experimental finding that these complexes have a strong tendency to form supramolecular assemblies in the form of oligomers and extended structures with M−M interactions.5 Previous studies by Omary and Patterson suggested, on the basis of extended Hückel calculations, that the argentophilic and aurophilic bonding in $[Ag(CN)_2]_2^−$ and $[Au(CN)_2]_2^−$ oligomers, respectively, is also cooperative.80 In the mercury system itself, the ground-state cooperativity in the Hg−Hg bonding per the results in Table 4 is consistent with the experimental fact that cooling mercury vapor after supersonic expansion experiments has often led to the formation of large clusters instead of just dimers or trimers.81 Furthermore, informed prediction of the geometry of Hg$_n$ species that have yet to be characterized can be made on the basis of these results. For example, the internuclear distances in the linear Hg$_3$ trimer have yet to be characterized experimentally. Since the calculations in Table 4 predict a shortening by $\sim$0.07 Å on going from the dimer to the trimer, combining this finding with the experimental distance in the dimer leads to a prediction that the linear Hg$_3$ trimer will have two identical distances of $\sim$3.56 Å.

To analyze the bonding in the excited states, we first discuss the orbital nature of the excitations considered for Hg$_4$: the orbital nature of the excitations in Hg$_2$ and Hg$_3$ has been discussed earlier. The HOMO of Hg$_4$ is the 6s $\sigma^*$ orbital that is antibonding between all Hg atoms; see Figure 5. For the triplet excited states of Hg$_4$, we consider states created by spin−forbidden transitions from this HOMO to bonding 6p $\sigma$ and $\pi$ orbitals to form $\Sigma^+_u$ and $\Pi_u$ states, respectively. The second-highest occupied Hg$_4$ orbital is a 6s $\sigma$, which is bonding between the central Hg pair of atoms but antibonding between the outer two pairs of Hg atoms. We consider high-spin excited states where the total state is a coupled quintet. The two quintets that can be formed are $\Pi_u$ and $\Sigma^-_u$. The issue of excited-state cooperativity is harder to assess than the cooperativity in the ground state. This is because excited-state bonds differ in

<table>
<thead>
<tr>
<th>$n$</th>
<th>$R_e$, Å</th>
<th>$E/n$, cm$^{-1}$</th>
<th>$D_e$, cm$^{-1}$</th>
<th>$D_e/bond$, cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.521</td>
<td>−384</td>
<td>768</td>
<td>768</td>
</tr>
<tr>
<td>3</td>
<td>3.450, 3.450</td>
<td>−613</td>
<td>1838</td>
<td>919</td>
</tr>
<tr>
<td>4</td>
<td>3.419, 3.389, 3.419</td>
<td>−756</td>
<td>3025</td>
<td>1008</td>
</tr>
</tbody>
</table>

Omary et al.

**TABLE 4: Ground-State Cooperativity in Hg$_n$ Linear (D$_{2h}$) Oligomers According to MP2/LANL2DZ Calculations**
strength in different oligomers in the absence of cooperativity while in the ground-state all oligomers have a formal bond order of 0. A one-photon excitation from an antibonding to a bonding orbital to form a triplet excited state, for example, involves an increase in the formal bond order from 0 in all oligomers to 1 in a dimer (one bond), 1/2 in a trimer (two bonds), and 1/3 in a tetramer (three bonds) in the absence of cooperativity. Therefore, the basis in evaluating the cooperativity in the excited state will be the total stabilization energy for all bonds in the oligomers, as opposed to individual bond lengths and energies.

The results for low-lying paramagnetic states of $^*\text{Hg}_n$ ($n = 1$–4) linear exciplexes are shown in Table 5, and their geometries and spin densities are shown in Figure 5. The cooperativity in the $\text{Hg}\cdots\text{Hg}$ bonding is clearly illustrated in the Table 5 entries. As one moves toward larger clusters in either $^3\Sigma$ or $^3\Pi$ states, the binding energy per atom and the average bond energy both become higher. This occurs despite the fact that the individual bonds may be weaker, on average, as one moves in this direction (see the bond lengths in Figure 5). The increased stabilization on going to longer oligomer exciplexes is several thousand inverse centimeters per atom added, compared to only a few hundred inverse centimeter increases seen in Table 4 for the ground-state oligomers, although the total formal bond order expected without cooperativity is uniform in each case (0 for the ground states and 1 for the triplet states). This suggests that the excited-state cooperativity is stronger than the ground-state cooperativity. Another very important result in Table 5 is that lower energies and higher binding energies are obtained for the quintet tetramers compared to two separated triplet dimers. This means that the energy of two excited dimers that ferromagnetically couple with one another to form a quintet is lower than

**Table 5: Excited-State Cooperativity in $^*\text{Hg}_n$ Linear Oligomer Exciplexes According to MP2/LANL2DZ Calculations**

<table>
<thead>
<tr>
<th>&quot;n&quot; in $^*\text{Hg}_n$</th>
<th>state</th>
<th>$E/\hbar\omega$</th>
<th>$D_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$^1\Sigma_u^+$</td>
<td>$-21.16$</td>
<td>7.962</td>
</tr>
<tr>
<td>3</td>
<td>$^3\Sigma_u^+$</td>
<td>$-27.19$</td>
<td>8.013</td>
</tr>
<tr>
<td>4</td>
<td>$^3\Sigma_u^+$</td>
<td>$-29.63$</td>
<td>15.46</td>
</tr>
<tr>
<td>2</td>
<td>$^3\Pi_u$</td>
<td>$-21.19$</td>
<td>8.013</td>
</tr>
<tr>
<td>3</td>
<td>$^3\Pi_u$</td>
<td>$-27.10$</td>
<td>12.57</td>
</tr>
<tr>
<td>4</td>
<td>$^3\Pi_u$</td>
<td>$-29.63$</td>
<td>15.46</td>
</tr>
<tr>
<td>4</td>
<td>$^3\Pi_u$</td>
<td>$-22.70$</td>
<td>22.07</td>
</tr>
<tr>
<td>4</td>
<td>$^3\Pi_u$</td>
<td>$-22.12$</td>
<td>19.77</td>
</tr>
</tbody>
</table>

* Relative to the energy of a $^*\text{Hg}$ atom in the $^3\text{P}$ state. $^b D_x$ values were calculated for $^*\text{Hg}_n$ exciplexes such that triplet states dissociate to one $^3\text{P}$ $^*\text{Hg}$ atom and "$n - 1$" $^1\text{S}$ ground-state Hg atoms while the quintet tetramers dissociate to two $^3\text{P}$ $^*\text{Hg}$ atoms and two $^3\text{S}$ Hg atoms.
the energy of two isolated triplet dimers. This suggests that solid-state
linear-chain materials systems that exhibit excited-state
cooperativity and excimer/exciplex-forming properties similar
to those of the mercury system may stabilize high-spin excited
states. This would be extremely significant if proved experi-
mentally because such materials would be ideal as magnetic
switching devices, which have been receiving significant interest
lately.33 The magnetic behavior would be “turned on” by light
exposure, while it turns off in the dark because the material is
diamagnetic in the ground state. Further treatment of linear and
nonlinear clusters of group 12 elements, including larger clusters
and different spin states, is in progress.

The cooperative bonding in linear mercury clusters should
be viewed as long-range/multicenter bonding, as opposed to the
classical two-electron/two-center covalent bonding. An inspection
of Figure 5 supports this conclusion because it shows that
(1) all bonds in *Hg
n
exciplexes are shortened rather signifi-
cantly from the ∼3.5 Å ground-state distances, (2) the electron
densities in the bonding orbitals span all atoms in the cluster,
and (3) the spin densities are delocalized onto all atoms. While
the extent of each of these trends varies depending on the
oligomer size and the state, a general delocalization of the
extent of each of these trends varies depending on the
bonding parameters will require full relativistic treatment
of heavy metal systems. In the Hg vapor
system.

This study demonstrates effective use of different theoretical
treatments and approximations to prescribe methods and basis
set combinations that are suitable to solve specific spectroscopic
and bonding problems. We have shown that informed assign-
ments of electronic transitions have been made for the Hg
clusters based on the energies, bandwidths, and other spectro-
scopic parameters that were in good agreement with the experi-
mental parameters available. The variations in the ex-
perimental data are usually large enough to be comparable to
effects due to the neglect of spin–orbit coupling in an otherwise
rigorous treatment of heavy metal systems. In the Hg vapor
system, for example, the emission maxima have been reported
anywhere between ∼475 and 500 nm for the trimer and between
325 and 350 nm for the dimer due to changes in temperature,
carrier gas, pressure, equipment setup, and other experimental
factors. Hence, calculations that predict the energy range and
estimate spectroscopic parameters that characterize the excited-
state distortion are invaluable for such situations as this study
demonstrates. Accurate calculations of the theoretical spectral
and bonding parameters will require full relativistic treatment
of spin–orbit effects using relativistic, four-component spinor,
Dirac–Fock–CI wave functions and are extremely demanding.
While we plan to pursue such calculations for the small mercury
clusters, the current state-of-the-art of computational resources
does not allow a similar treatment of large clusters or realistic
models for large ligand-containing transition-metal complexes
for which the Hg
n
system is a good model. Calculations that
qualitatively characterize the bonding in Hg
linear clusters have
demonstrated the significance of cooperativity in both the
weakly bound ground state and strongly bound low-lying
paramagnetic excited states. These results carry significance
for extended-chain solid-state systems that may be helpful for
the utilization and design of luminescent and magnetic materials
that have bonding and spectroscopic behavior similar to that of
the Hg
n
system. Our efforts will continue to study larger Hg
clusters with different geometries as well as phosphorescent
closed-shell transition-metal complexes in coordination with the
evolving experimental studies. This is an era where experimental
methods that directly probe the excited-state structure by time-
resolved methods of diffraction (photocrystallography), EXAFS,86
and Raman spectroscopy87 are available. To make maximum use of the information gained from these elegant
methods, it will be extremely important to increase the utilization
of computational methods to study the excited states of
luminescent organic and inorganic materials of current interest.

Acknowledgment. We acknowledge partial support of this
work by the Robert A. Welch Foundation (Grant B-1542 to
M.A.O.) and equipment support by the National Science
Foundation (Grant CHE-0342824 to A.K.W. and P.S.B.).
Computer resources were, in part, provided by the National
Computational Science Alliance under Grant Nos. CHE010021
(A.K.W.) and CHE030046 (P.S.B.) and utilized the NCSA SGI
Origin 2000 and IBM p690. Additional computational support
was provided by the Academic Computing Services at the
University of North Texas on the UNT Research Cluster. We
also thank Professor Kirk Peterson for kindly providing the
cc-pRvA/Z basis sets.

References and Notes

2003, 125, 42, 14228.
(3) Fernandez, E. I.; Gimeno, M. C.; Laguna, A.; Lopez-de-Luzuriaga,
2000, 122, 7287.
(4) Makedonas, C.; Mitsopoulos, C. A.; Lahoz, F. J.; Balana, A. I.
(5) For a review, see: Pyykkö, P. Chem. Rev. 1997, 97, 599.
(7) (a) Schmidthauer, H. Gold Bull. 1990, 23, 11. (b) Schmidthauer, H.
Chem. Soc. Rev. 1995, 24, 749. (c) Grohmann, A.; Schmidthauer, H.
In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone,
(9) (a) Omary, M. A.; Webb, T. R.; Assefa, Z.; Shankle, G. E.; Patterson,
H. H. Inorg. Chem. 1998, 37, 1380. (b) Singh, K.; Long, J. R.; Stavropoulos,


The general behavior of the correlation-consistent basis sets is typically so systematic for a range of properties such that results from a series of calculations using increasingly larger correlation-consistent basis sets can be extrapolated to the CBS limit using a number of approaches (e.g., see: Feller, D. J. Chem. Phys. 1992, 96, 6104). As it is unknown whether the CBS extrapolation schemes used for first-, second-, and third-row main group molecules will also be the most appropriate methods for describing basis set behavior for the transition metals, an in-depth extrapolation study is needed prior to general use of an approach. Therefore, we have not extrapolated the results to the CBS limit and, rather, report simply the results of the calculations. As shown in the results herein, the trend seen on going to larger correlation-consistent basis sets is extremely useful even without extrapolation to the CBS limit.


(63) The general behavior of the correlation-consistent basis sets is extremely demanding and may not be tractable with the which large model compounds are treated. In such cases, treating spin which a broad range of methods and basis sets are tested, or in studies in Molecular Spectroscopy of the Triplet State; Prentice Hall: Englewood Cliffs, NJ, 1969.


(71) See, for example: McGlynn, S. P.; Azumi, T.; Kinoshita, M.

(72) This conclusion is significant to note in studies such as this one, in which a broad range of methods and basis sets are tested, or in studies in which large model compounds are treated. In such cases, treating spin–orbit coupling is extremely demanding and may not be tractable with the existing computational resources. For purposes of assignment of luminescence bands, a difference of ~1000 cm⁻¹ is usually insignificant.


(75) We used the guess=alter keyword in Gaussian 98 to switch between the Σg and Πg states. By default, the program calculates the lowest energy triplet state. Misleading spectroscopic results will be obtained if they were based on a curve constructed by plotting the lower energy state at each distance to the curve for the Πg state.


(80) See, for example, Table 5 in Omary, M. A.; Webb, T. R.; Assefa, Z.; Shankle, G. E.; Patterson, H. H. Inorg. Chem. 1998, 37, 1380 and Tables 3 and 4 and Figure 9 in Ravasdieh-Omary, M. A.; Omary, M. A.; Patterson, H. H. J. Am. Chem. Soc. 2000, 122, 10371.


(82) See, for example: McGlynn, S. P.; Azumi, T.; Kinoshita, M.


(85) See, for example: (a) Coppens, P. Chem. Commun. 2003, 12, 1317.


(89) References 2 and 3 in ref 88 initially reported 3.25 Å on the basis of gas-phase viscosity data using an inaccurate D value known at the time. It was argued in ref 88 that this should be corrected to 3.70 Å using the correct D value.


